
This pdf is generated on April 19, 2024. Go to the documentation page for the most up-to-

date version.

Export Simple Analytics Data to a Database or Data
Warehouse with CloudQuery

Introduction

This guide will show you how to export Simple Analytics data to your own database, data

warehouse or data lake using CloudQuery. CloudQuery is an open source ELT platform that can load

Simple Analytics data and send it to dozens of different destinations, including PostgreSQL, SQLite,

BigQuery, S3, Snowflake, and many more. With your data exported, you can then do more

advanced analysis or use the data in other systems.

We will show you how to export your Simple Analytics data with two examples:

�. a SQLite database,

�. a BigQuery Data Warehouse running on Google Cloud.

This should give you the general idea for any supported database, data warehouse or data lake.

The same steps can applied with slight modifications for any other destination supported by

CloudQuery. Authentication steps specific to each destination are documented in the CloudQuery

documentation for the destination.

Prerequisites

To follow along with the examples, you will need:

a Simple Analytics API key and user ID. You can create a key in your account se�ings. The

user ID is also shown there.

the CloudQuery CLI installed. CloudQuery is distributed as a cross-platform CLI tool, with pre-

built binaries for different platforms. You can follow the installation instructions for your

desired platform on the CloudQuery website by following the links below:

MacOS

Linux

Windows

When the installation is complete, you should be able to run the cloudquery --help command in

your terminal and see information about the available commands.

https://docs.simpleanalytics.com/export-to-data-warehouse-with-cloudquery?ref=pdf
https://www.cloudquery.io/
https://www.cloudquery.io/docs/plugins/destinations/overview
https://simpleanalytics.com/account
https://www.cloudquery.io/docs/quickstart/macOS
https://www.cloudquery.io/docs/quickstart/linux
https://www.cloudquery.io/docs/quickstart/windows

Example 1: Exporting to SQLite

The CloudQuery CLI uses configuration files to define the data sources and destinations. In this

example, we will create configuration files that sync Simple Analytics data to a local SQLite

database.

Step 1. Create the Source Configuration File

First, let's create a source configuration file named simpleanalytics.yml with the following

contents:

kind: source spec: name: "simpleanalytics" path:
"simpleanalytics/simpleanalytics" version: "v1.0.0" tables: ["*"] destinations:
- "sqlite" spec: # plugin spec section user_id: "${SA_USER_ID}" api_key:
"${SA_API_KEY}" period: 7d websites: - hostname: <your-website.com> #
metadata_fields: # - fieldname_text # - fieldname_int # - ...

This configuration file defines a source named simpleanalytics that will sync data from Simple

Analytics to a SQLite database. You can find the latest version on the releases page.

The inner plugin spec section defines the configuration specific to the Simple Analytics plugin. Here

are a few of the highlights:

The user_id and api_key values are set to environment variables, which we will set in the

next step.

The period value defines the time period for which data will be synced. We chose 7d here

to fetch only the last 7 days, but you can also choose 1m for the last month, 1y for the

last year, and so on, or omit this se�ing to fetch all your historical data.

The websites section defines the websites for which data will be synced. You should

replace <your-website.com> with the website as defined can add multiple websites to this

list.

The metadata_fields is an optional list of metadata fields to sync, e.g.

["fieldname_text", "fieldname_int"] . If not specified, no metadata fields will be

synced. To get your available metadata_fields, check the Simple Analytics exporter. The fields

are made of name + underscore + type (fieldname_text).

All the available options for the Simple Analytics CloudQuery plugin are documented in the plugin

repository README.

Step 2. Create the Destination Configuration File

Next, let's create a destination configuration file named sqlite.yml with the following contents:

kind: destination spec: name: sqlite path: cloudquery/sqlite version: "v1.2.1"
spec: connection_string: ./db.sql

https://github.com/simpleanalytics/cq-source-simpleanalytics/releases
https://simpleanalytics.com/select-website/export
https://github.com/simpleanalytics/cq-source-simpleanalytics

This configuration file defines a destination named sqlite that will sync data to a SQLite

database. This must be the same as the value we have in the destinations se�ing in the source

config.

The example uses the plugin version 1.2.1, but you can find the latest version on the CloudQuery

website.

The connection_string value defines the path to the SQLite database file. In this example, we

will create a file named db.sql in the current directory.

Step 3. Set Environment Variables

Next, we need to set the SA_USER_ID and SA_API_KEY environment variables. You can do this

by running the following commands in your terminal:

export SA_USER_ID=<your-user-id> export SA_API_KEY=<your-api-key>

Step 4. Run CloudQuery

With the configuration files and environment variables in place, we can run CloudQuery to sync the

data. Run the following command in your terminal:

cloudquery sync simpleanalytics.yml sqlite.yml

You will see a progress bar as CloudQuery syncs the data. It might take a few minutes, depending

on how much data you have. When it's done, it should look something like this:

➜ playground cloudquery sync simpleanalytics.yml sqlite.yml Loading spec(s)
from simple-analytics.yml Starting migration with 2 tables for: simple-
analytics (v1.0.0) -> [sqlite (v1.2.1)] Migration completed successfully.
Starting sync for: simple-analytics (v1.0.0) -> [sqlite (v1.2.1)] Sync
completed successfully. Resources: 105666, Errors: 0, Panics: 0, Time: 41s

If anything goes wrong, you can inspect the cloudquery.log file to look for error messages.

Step 5. Query the data

We can now open the SQLite database file to see the data (you will need have SQLite installed for

this step):

sqlite3 db.sql

To render results nicely, we can turn on the column mode and show headers:

sqlite> .mode column sqlite> .headers on

The sync created two tables: simple_analytics_page_views and simple_analytics_events .

Let's query the simple_analytics_page_views table to see the top pages for the last 7 days:

https://www.cloudquery.io/docs/plugins/destinations/sqlite/overview
https://www.sqlite.org/download.html

sqlite> select path, count(*) as count from simple_analytics_page_views group
by path order by count desc limit 3; path count ------------------------- -----
- / 123456 /docs 78910 /blog/simple-analytics 11121

What you do with the data from here is up to you. You can use it to create reports, dashboards, or

other visualizations.

Example 2: Exporting to BigQuery

For our second example, we will sync Simple Analytics data to BigQuery. BigQuery is a completely

serverless and cost-effective enterprise data warehouse.

Prerequisites

To follow this example, you will need to have a Google Cloud Platform account and a project with

BigQuery enabled. You can follow the Quickstart guide to create a project and enable BigQuery.

You will also need to have the gcloud command-line tool installed. See the official documentation

for installing the gcloud CLI.

Step 1. Create an Empty BigQuery Dataset

On the BigQuery Cloud Console, expand the project menu and select your project. Then, click the

Create dataset bu�on to create a new dataset.

Give the dataset a name and click Create .

https://cloud.google.com/bigquery
https://cloud.google.com/bigquery/docs/quickstarts/quickstart-web-ui
https://cloud.google.com/sdk/docs/install
https://console.cloud.google.com/bigquery

Step 2. Log in to Google Cloud using gcloud

Next, we need to log in to Google Cloud using the gcloud command-line tool. The CloudQuery plugin

will use the same credentials to write to BigQuery. Run the following command in your terminal:

gcloud auth application-default login

Step 3. Create the Source Configuration File

Let's create a source configuration file named simpleanalytics.yml with the following

contents:

kind: source spec: name: "simpleanalytics" path:
"simpleanalytics/simpleanalytics" version: "v1.0.0" tables: ["*"] destinations:
- "bigquery" # <-- this is the only change from the SQLite example spec: #
plugin spec section user_id: "${SA_USER_ID}" api_key: "${SA_API_KEY}" period:
7d websites: - hostname: <your-website.com> # metadata_fields:

The only change from the SQLite example is the destinations se�ing, which now uses

bigquery instead of sqlite .

Step 4. Create the Destination Configuration File

Next, let's create a destination configuration file named bigquery.yml with the following

contents:

kind: destination spec: name: bigquery path: cloudquery/bigquery version:
"v2.1.3" write_mode: "append" spec: project_id: ${PROJECT_ID} dataset_id:
${DATASET_ID}

Like with SQLite, see the CloudQuery BigQuery Plugin page for the latest version and details on the

available configuration options.

https://cloud.google.com/sdk/gcloud
https://www.cloudquery.io/docs/plugins/destinations/bigquery/overview

Step 5. Set Environment Variables

Next, we need to set the SA_USER_ID , SA_API_KEY , PROJECT_ID and DATASET_ID

environment variables. Run the following commands in your terminal, replacing the placeholders

with your values:

export SA_USER_ID=<your-user-id> export SA_API_KEY=<your-api-key> export
PROJECT_ID=<your-project-id> export DATASET_ID=<your-dataset-id>

Step 6. Run CloudQuery

With the configuration files and environment variables in place, we can run CloudQuery to sync the

data. Run the following command in your terminal:

cloudquery sync simpleanalytics.yml bigquery.yml

It should run for a few minutes, depending on how much data you have. When it's done, it should

look something like this:

➜ playground cloudquery sync simpleanalytics.yml bigquery.yml Loading spec(s)
from simpleanalytics.yml Starting migration with 2 tables for: simpleanalytics
(v1.0.0) -> [bigquery (v2.1.3)] Migration completed successfully. Starting sync
for: simpleanalytics (v1.0.0) -> [bigquery (v2.1.3)] Sync completed
successfully. Resources: 105666, Errors: 0, Panics: 0, Time: 2m 10s

If anything goes wrong, you can inspect the cloudquery.log file to look for error messages.

Step 7. Query the data

Now that the data is in BigQuery, we can query it using the BigQuery web console. Click the dataset

in the sidebar to open it. Then click on the newly created simple_analytics_page_views table,

and click the Query bu�on:

https://console.cloud.google.com/bigquery

Now we can run any query we like. In this example we simply explore 100 rows from the table:

This pdf is generated on April 19, 2024. Go to the documentation page for the most up-to-

date version.

https://docs.simpleanalytics.com/export-to-data-warehouse-with-cloudquery?ref=pdf

